The Gyroid

In 1970, Alan Schoen discovered gyroids, "infinite periodic minimal surfaces without self-intersections" [1]. One feature of this unusual surface is its many channels, which you can see by rotating the object.


  • [Snapshot]
  • [Snapshot]


The equation for the gyroid is
Unexpected applications of gyroidal shapes arise in liquid crystalline materials, biological systems, and in the manufacture of industrial products like soap, detergent, shampoo, and waxes. Such shapes arise frequently in the study of liquid mixtures (like ketchup) when they act like solids, where they are called mesophases.
[1] A. H. Schoen, Infinite Periodic Minimal Surfaces without Self-Intersections, NASA Technical Note TN D-5541, Washington, DC: National Aeronautics and Space Administration, 1970.
2. J. D. Enlow, "Mathematical Modelling of Surfactant Liquid Crystal X-ray Diffraction," Ph.D. thesis, Department of Philosphy, University of Otago, New Zealand, 2002. www.maths.otago.ac.nz/~jenlow/research/files/thesis.pdf.
3. B. Boghosian and P. Coveney. "Ketchup on the Grid with Joysticks." Projects in Scientific Computing, Pittsburgh Supercomputing Center, 2004. www.psc.edu/science/teragyroid.html.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+