The Gyroid

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

In 1970, Alan Schoen discovered gyroids, "infinite periodic minimal surfaces without self-intersections" [1]. One feature of this unusual surface is its many channels, which you can see by rotating the object.

Contributed by: Enrique Zeleny (September 2012)
Open content licensed under CC BY-NC-SA


Snapshots


Details

The equation for the gyroid is

.

Unexpected applications of gyroidal shapes arise in liquid crystalline materials, biological systems, and in the manufacture of industrial products like soap, detergent, shampoo, and waxes. Such shapes arise frequently in the study of liquid mixtures (like ketchup) when they act like solids, where they are called mesophases.

References

[1] A. H. Schoen, Infinite Periodic Minimal Surfaces without Self-Intersections, NASA Technical Note TN D-5541, Washington, DC: National Aeronautics and Space Administration, 1970.

2. J. D. Enlow, "Mathematical Modelling of Surfactant Liquid Crystal X-ray Diffraction," Ph.D. thesis, Department of Philosphy, University of Otago, New Zealand, 2002. www.maths.otago.ac.nz/~jenlow/research/files/thesis.pdf.

3. B. Boghosian and P. Coveney. "Ketchup on the Grid with Joysticks." Projects in Scientific Computing, Pittsburgh Supercomputing Center, 2004. www.psc.edu/science/teragyroid.html.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send