11348

The Hairy Ball Theorem

The hairy ball theorem states that for a sphere or any surface homeomorphic to a sphere, there is no continuous, non-vanishing tangent vector field. In other words, you cannot comb a hairy ball flat without at least one part or cowlick.
In this Demonstration, you vary a vector field to "comb" a tangent vector field on a sphere or torus, showing the point with the local minimum vector norm on that surface as a small sphere. If the smallest vector norm is zero, the hairy surface has a vanishing point, or "part", and is considered to be "not combed". On a sphere, this minimum point is always zero for a tangent vector field (indicating a part), while a hairy torus can, in fact, be combed flat. The minimum point can be moved using the Locator.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: Initial settings of the Demonstration. The vector field shown on the sphere is a cross-product of the variable "comb" vector field and the surface normal vector field, yielding a vector field that is always tangent to the surface.
Snapshot 2: Torus with a "combed" vector field. The smallest vector has a magnitude of 1; since the surface local minimum is not zero, the vector field is non-vanishing and the torus can be considered perfectly combed.
Snapshot 3: Torus with a vector field that is "not combed". Although a continuous non-vanishing tangent vector field can exist on a genus 1 torus, this case shows a vector field that is not perfectly combed.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+