11453

The Joukowski Mapping: Airfoils from Circles

A simple way of modelling the cross section of an airfoil (or aerofoil) is to transform a circle in the Argand diagram using the Joukowski mapping, . The map is conformal except at the points , where the complex derivative is zero. You can drag the circle's center to give a variety of airfoil shapes, but it should pass through one of these points and either pass through or enclose the other. In this Demonstration, a good result may be obtained by dragging the center of the circle to the red target at .

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

If the center of the circle is at the origin, the image is not an airfoil but a line segment. For all other choices of center, the circle passes through one point at which the mapping fails to be conformal and encloses the other. This means the mapping is conformal everywhere in the exterior of the circle, so we can model the airflow across an cylinder using a complex analytic potential and then conformally transform to the airflow across an airfoil. The fact that the circle passes through exactly one of these two points means that the image has exactly one cusp and is smooth everywhere else.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+