The Period of Lunar Tides

The period of tides is not exactly one day but a little bit longer, because the Moon orbits the Earth with a different period than the Earth rotates around its axis. We usually think that "the high tide is coming," but for an observer who is not standing on the Earth (as in the view of this Demonstration), observers on Earth are are actually going into the high tide.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Suppose that the whole Earth is covered by water, and the Moon orbits the Earth above the equator.
The period of the tides can be determined as the solution of the equation
where is the Earth's sidereal rotation period (around its axis), which is 23 h 56 min, and is the Moon's revolution period around the Earth (the sidereal month), which is 27 d 7 h 43 min. The solution of this equation is 24 h 50 min, and because there are two water bulges, the high tide or low tide occurs every 12 h 25 min (the so-called semidiurnal tide), and the water level changes every 6 h 12 min.
Because of the Earth's continents, the high tides do not occur when the Moon is right above us (or right "under" us). The Sun also has an influence on the tides, the solar tidal force being approximately 2.2 smaller than the lunar. When we take into account all these effects (and some others not mentioned here), the high tide is slightly ahead of the connecting line between the centers of the Earth and the Moon (in the animation the angle is shown as 10° to make this fact obvious).
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+