9846

The Pigeonhole Principle - Repunits

In 1834, Johann Dirichlet noted that if there are five objects in four drawers then there is a drawer with two or more objects. The Schubfachprinzip, or drawer principle, got renamed as the pigeonhole principle, and became a powerful tool in mathematical proofs.
Pick a number that ends with 1, 3, 7, or 9. Will it evenly divide a number consisting entirely of ones (a repunit)? Answer: yes. Proof: Suppose 239 was chosen. Take the remainder of 239 dividing 10, 100, 1000, ..., . The chosen number will not divide evenly into any of those 239 powers of 10, so there are 238 possible remainders, 1 to 238. By the pigeonhole principle, two remainders must be the same, for some and . As it turns out, and both give remainder 44. Subtracting, 9,999,999,000 is the result, which yields 1,111,111 when divided by 9000. When , always returns an all-1 number multiplied by 9 and some power of 10, finishing the proof. The reciprocal of the chosen number has a repeating decimal of similar length. Consider: . . ….

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+