The Plemelj Construction of a Triangle: 8

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration constructs a triangle given the length of its base, the length of the altitude from to and the difference between the angles at and . This is not one of Plemelj's original constructions, but a new one based on his equation , where and .

[more]

The modified equation is , which can be read as the law of sines for a triangle where the sides of length 1 and are opposite the angles and , respectively, or, multiplying by , that the sides of length and are opposite the angles and .

Construction

Step 1: Draw a straight line of length and a line parallel to at distance . Let be the midpoint of and the point on just above .

Step 2: Draw a circle with center and radius .

Step 3: Draw the ray from at the angle δ from to intersect at the point .

Step 4: Draw the circle with center and radius .

Step 5: Measure out a point on the circle at distance from .

Step 6: The point is the intersection of and the right bisector of .

Step 7: The triangle meets the stated conditions.

Verification

According to the law of sines, the exterior angle at of is , which is . The angle is . So and .

[less]

Contributed by: Izidor Hafner, Nada Razpet and Marko Razpet (August 2017)
Open content licensed under CC BY-NC-SA


Snapshots


Details

For the history of this problem, references and a photograph of Plemelj's first solution, see The Plemelj Construction of a Triangle: 1.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send