10182

# The Time-Dependent Electromagnetic Fields of a Relativistic Circular Current

The retarded, time-dependent electromagnetic fields of a relativistic circular current are computed by the Heaviside-Feynman formulas. The radius of the circle of the source is 1 meter and the angular velocity is in radians per second. The charge is represented as a red dot and the constant charge velocity is less than the speed of light.
As you move away from the charge's rotation plane, you can see the retardation effect by observing the discrepancy between the charge's position and the electric field vortex.

### DETAILS

We regard the observation points near the circular source, so that the observation time is equal to the source time and the retardation can be neglected. We see the and component of the electric field in the plane changing with time. When the time is running, in the background you see the current position of the charge in the plane as a red point. The displayed domain of the electric field is 6 meters by 6 meters with 400 vectors. The range goes from -3 meters to +3 meters. A good observation of the source is at with variable . The minimum and maximum values of are 0.1 meter and 2 meters. To observe relativistic effects, set and to their maximum values.
The Heaviside-Feynman formulas are defined in The Feynman Lectures on Physics: Mainly Electromagnetism and Matter, Chapter 21; and Klassische Elektrodynamik, 4. Auflage, Chapter 6.5, by J. D. Jackson.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.