9867

The Traveling Salesman Problem 3: Nearest Neighbor Heuristic

Because of its simplicity, the nearest neighbor heuristic is one of the first algorithms that comes to mind in attempting to solve the traveling salesman problem (TSP), in which a salesman has to plan a tour of cities that is of minimal length. In this heuristic, the salesman starts at some city and then visits the city nearest to the starting city, and so on, only taking care not to visit a city twice. At the end all cities are visited and the salesman returns to the starting city.
This Demonstration displays nearest neighbor tours (use the step slider to see them) along with a better tour computed by the built-in Mathematica function FindShortestTour, forming the outline of the blue polygon. All nearest neighbor tours start at point 1.
There is a moment at which some points are "forgotten" during the course of the algorithm, and they have to be inserted at a great cost in the end. Though usually rather bad, nearest neighbor tours have the advantage that they only contain a few severe mistakes while being very fast and easy to implement. Therefore, such tours can serve as good starting tours that other methods can improve.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Reference
[1] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, New York: John Wiley & Sons, 1985.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+