9772

Three Circles with Two Common Tangents

Let be a triangle circumscribed by the circle . Let be a point on ; form the line . Consider three other circles , , and with the common tangent , with inscribed in the triangle , and and tangent to both the segment and . Prove that , , and have two common tangents.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The statement holds for arbitrary points , , on . Moreover, the statement holds for an arbitrary point on . You can drag the vertices A, B and C and change the position of using a slider. This is problem 4 from the eleventh International Mathematical Olympiad (IMO) held in Bucharest, Romania, July 5–20, 1969.
Reference
[1] D. Djukić, V. Janković, I. Matić, and N. Petrović, The IMO Compendium: A Collection of Problems Suggested for the International Mathematical Olympiads, 1959–2009, 2nd ed., New York: Springer, 2011.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+