11514

Tracing Card Paths during Perfect Shuffles

This Demonstration displays the path that each card takes through a deck over the course of a sequence of consecutive perfect shuffles. Each colored line traces the path of one card as a plot of position versus time. Use the controls to adjust the number of cards in the deck and whether the shuffle is an in-shuffle or an out-shuffle. The minimum number of shuffles required to return the deck to its original order is shown at the top.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

A perfect shuffle is a type of riffle shuffle wherein a deck of cards is divided into two equal halves, and then the halves are interlaced with one another. There are two types of perfect shuffles: an out-shuffle, for which the original top card remains on top, and an in-shuffle, for which the original top card becomes the new second card [1].
Repeating a perfect shuffle on a finite deck must eventually return it to its original order. If the deck contains cards (where is even), then the number of out-shuffles required is the multiplicative order of modulo , while the number of in-shuffles required is the multiplicative order of modulo [2].
References
[1] P. Diaconis, R. L. Graham and W. M. Kantor, "The Mathematics of Perfect Shuffles," Advances in Applied Mathematics, 4(2), 1983 pp. 175–196. doi:10.1016/0196-8858(83)90009-X.
[2] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. "Multiplicative Order of ." oeis.org/A002326.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+