Trajectories on the Müller-Brown Potential Energy Surface

The Müller–Brown potential energy surface is a canonical example of a potential surface used in theoretical chemistry. The analytic form for this surface is given by
There are three minima and two saddle points. This model is often used for testing algorithms that find transition states and for exploring minimum-energy pathways. In this Demonstration, you can explore the trajectories generated by this potential and superimpose them on the surface itself. You can set the initial position of the trajectory using one of the controls. By advancing the "time" slider, you can view the dynamical evolution of the system as either a 2D contour plot or a 3D surface. You can observe interesting dynamical events, including surmounting the energy barriers, quasi-periodic orbits, and trajectories that recross the transition-state dividing surface.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] K. Müller and L. D. Brown, "Location of Saddle Points and Minimum Energy Paths by a Constrained Simplex Optimization Procedure," Theoretical Chemistry Accounts, 53, 1979 pp. 75–93.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+