Transient Heat Conduction with a Nuclear Heat Source

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Consider a spherical nuclear fuel element consisting of a sphere of fissionable material of radius , surrounded by a spherical shell of alloy cladding with outer radius , initially at temperature , that is suddenly immersed at in a cooling bath of temperature . The heat equation describing this system is:

[more]

,

with

at ,

at ,

and

,

where is the radial coordinate (), is the thermal diffusivity (), is the thermal conductivity (), is the heat transfer coefficient between the sphere and the surrounding fluid (), and is the volume source of thermal energy () generated by the fissionable material. This source is approximated by a simple parabolic function:

,

where is a dimensionless positive parameter.

To solve this problem, it is convenient to introduce the following dimensionless variables:

and

.

Thus the equations become

,

at ,

at ,

and

,

with

and

.

Here is the Biot number, the ratio of internal resistance to conductive heat transfer in the sphere to the external resistance of convective heat transfer from the sphere to the surrounding fluid. The subscripts and refer to thermal properties of the spheres and , respectively.

We show the temperature distribution and the maximum temperature within the system, quantities that are significant when making estimates of thermal deterioration [1].

[less]

Contributed by: Clay Gruesbeck (January 2017)
Open content licensed under CC BY-NC-SA


Snapshots


Details

A similar steady-state problem is solved in [1].

Reference

[1] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, rev. 2nd ed., New York: John Wiley & Sons, Inc., 2007.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send