9853

Transmission and Reflection Coefficients of Quantum Particles

This Demonstration shows the transmission coefficient and the reflection coefficient of a quantum particle with energy hitting a rectangular potential barrier. See how the height of the potential barrier affects and by comparing the cases and . The dimensionless coordinate is the product of the wavenumber for the wave inside the barrier and the barrier width .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

If a quantum particle hits a rectangular potential barrier, then both the transmission coefficient and the reflection coefficient are periodic functions of the potential width in the case , but and are decreasing and increasing functions, respectively, in the case . Furthermore, and depend on the quotient of the wavenumbers of the incident particle and of the wave inside the barrier; . This is shown interactively. The behavior of a quantum particle contrasts with that of a classical particle, where , , or vice versa. The "quantum tunneling" effect is a pure quantum effect in the case . The formulas for and follow by solving the time-independent wave equation (Schrödingers equation) with boundary conditions.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+