Trisecting an Angle Using the Cycloid of Ceva

The cycloid of Ceva has the polar equation . To trisect the angle , construct a line parallel to the polar axis (the positive axis). Let be the point of intersection of the cycloid and the line. Then the angle is one-third of the angle . Proof: let angle be and let the point on the axis be such that . Let be the orthogonal projection of on the line . The angle , so . Since , , . So angle equals , but .



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.