Trisection by Sliding a Line

This Demonstration shows how to trisect an angle by sliding a line. Adjust the angle to trisect, , and then move point so that the point is on the line . The point is chosen so that is twice . The angle is a third of the angle .



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Let . Assume the line is parallel to , is perpendicular to , and . If the point is on the line , and , then triangles and are isosceles. The angles and are equal and are equal to , but their sum equals . So .
The problem goes back to ancient Greece, with contributions by Hippocrates, Archimedes, and Pappus.
[1] P. Berloquin, The Garden of the Sphinx, New York: Scribner's, 1985 p. 179.
[2] J. J. O'Connor and E. F. Robertson. "Trisecting an Angle." (Jun 21, 2012) www-history.mcs.st-and.ac.uk/HistTopics/Trisecting_an_angle.html.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+