Uncertainty Product for Angular Momentum Components

In quantum physics the (orbital- or spin-) angular momentum components , , and are represented by noncommutating Hermitian operators. Therefore, no quantum state exists with the property that two of the uncertainties , , vanish simultaneously.
This Demonstration shows the product , which depends on the angular quantum number , either an integer or a half-integer, and also depends on the magnetic quantum number , (there are values for ). Here it is provided that the actual quantum mechanical state is a simultaneous eigenket (eigenstate) of the operator and of the component ; the eigenvalues of are , where is reduced Planck's constant .
The uncertainty product is an increasing function of the quantum number . Furthermore, it can be seen that (for fixed ) such states with are minimum-uncertainty product states; otherwise states with or have maximum uncertainty products.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The general uncertainty relation for any noncommutating operators , reads , where is the expectation value of the commutator . In the special case of angular momentum operators , we obtain . In the common basis of , eigenstates, the desired uncertainty product can be calculated exactly: and plotted in the diagram.
[1] L. D. Landau and E. M. Lifschitz, Quantum Mechanics, Reading MA: Addison–Wesley Publishing Company, 1958.
[2] J. J. Sakurai, Modern Quantum Mechanics, Reading MA: Addison–Wesley Publishing Company, 1995.
[3] P. Reineker, M. Schulz, and B. M. Schulz, Theoretische Physik III: Quantenmechanik 1, Berlin: Wiley–VCH, 2007.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+