10182

# Vega's Second Calculation of Pi

In 1794 Vega’s second estimate of was published [1]. Vega used Euler’s formula of the form . The picture from [1] ("results from Thesaurus") shows that he calculated to 143 decimal places and the other values to 144 places. In fact he took the calculation of from his first calculation of π, which was correct to 137 decimals.
To calculate , he summed positive and negative terms separately:
. Here , , , , ….
So Vega's calculation is presented as , where and are the sums of the positive and negative terms of the series for .
Comparing exact Mathematica calculations with [1] shows that Vega calculated the positive part correctly to 139 decimals, the negative part correctly to 142 decimals, and the final estimate of was correct to 136 decimals.

### DETAILS

In 1789, Vega used the formula , and the sum was not calculated again. We included it in this Demonstration for completeness. The denotations for terms of this sum are from [1–5].
References
[1] J. B. Vega, Thesaurus Logarithmorum Completus (logaritmisch-trigonometrischer Tafeln), Leipzig, 1794, p. 633.
[2] J. B. Vega, "Détermination de la démi-circonférence d'un cercle, dont le diamétre est=1," Nova Acta Academiae Scientiarum Imperialis Petrapolitanea for 1790, Vol. 9, 1795 pp. 41-44.
[3] W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York: Dover Publications, 1987 pp. 356–357.
[5] I. Hafner, "Vega's Calculation of Pi" from the Wolfram Demonstrations Project—A Wolfram Web Resource. (Jul 10, 2013) demonstrations.wolfram.com/VegasCalculationOfPi.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.