Visualizing the Collatz Conjecture and Some Variants

The Collatz conjecture (also known as the conjecture) claims that any positive integer eventually returns to 1 when iterated through the following recursive formula :
If is even, divide it by 2—that is, .
If is odd, multiply it by 3 and add 1—that is, .
This Demonstration shows the different paths of the positive integers up to 1000 as they are run through the Collatz sequence. It also includes other recursive functions with respect to different moduli (3, 5, and 7). These recursive functions return to 1 as well for every value in this range of 1000. Interestingly enough, they appear to return to 1 for values beyond 1000, like the Collatz case. Neither the Collatz conjecture nor any of its variants have been proven.
Click to zoom into the graph and shift-click to zoom back out.
  • Contributed by: Alex Han
  • (Mathematica Summer Camp 2015)


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+