10182

# Von Kármán Vortex Street in Turbulent Flow

A von Kármán vortex street (named after the fluid dynamicist Theodore von Kármán) is a phenomenon in fluid dynamics occurring with turbulent flow at a high Reynolds number. It consists typically of a pattern of swirling vortices in alternating directions that are caused, for example, by the unsteady separation of a fluid flowing over a rapidly moving cylinder. An empirical relation proposed by Strouhal gives , where is the vortex shedding frequency, is the diameter of the cylinder, and is the flow velocity. For a fluid with kinematic viscosity , the Reynolds number is generally in the range 100 to to exhibit this behavior. The vortex shedding frequency describes the rate at which vortices are formed in the wake of the moving cylinder. This phenomenon can sometimes cause vibrations near the frequency in wires or antennas subjected to high winds.
This Demonstration is intended to be qualitative and highly schematic. For more realistic photographs and illustrations, see http://en.wikipedia.org/wiki/Karman_vortex_street.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.