Weighted Voronoi Diagrams

This Demonstration compares a simple Voronoi diagram with two common types of weighted Voronoi diagrams: additive and multiplicative.
In a simple Voronoi diagram, the Voronoi cell of a site is the set of all points that are closer to that site than to any other site using a distance function (Euclidean, Manhattan, chessboard, …) to measure "closeness".
A weighted Voronoi diagram uses some combination of distance and a weight associated with each site.
In an additive Voronoi diagram, the weight is subtracted from the distance. This produces hyperbolas as boundaries for the cells, as opposed to line segments in the unweighted case.
In a multiplicative Voronoi diagram, the distance is multiplied by the associated weight, which gives circular arcs as the boundaries of the cells.
If all the sites have equal weights, both the additive and multiplicative Voronoi diagrams reduce to the unweighted case.
In this Demonstration, both a site's position and associated weight are random. You can set the range of the weights with an interval slider. The weight is indicated by a label close to the position of the site in the cell.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] A. Dobrin. "A Review of Properties and Variations of Voronoi Diagrams." Whitman College, Senior Project Archive, 2005. (Aug 16, 2016) www.whitman.edu/Documents/Academics/Mathematics/dobrinat.pdf.
[2] R. Devulapalli. "Dynamic Data Visualization using Weighted Voronoi Diagrams." University of Minnesota. (Aug 16, 2016) www.tc.umn.edu/~devul002/internetmap.html.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+