EXPLORE
LATEST
ABOUT
AUTHORING AREA
PARTICIPATE
Your browser does not support JavaScript or it may be disabled!
Subscribe to RSS feed
Ki-Jung Moon
Demonstrations 1 - 16 of 16
Binary Coding Functions for Generalized Logistic Maps with z-Unimodality
Updated this month
Bifurcation Diagram for a Generalized Logistic Map
Playing with the Hénon Map Starting with a Circle or a Square
Box-Counting Algorithm of the Hénon Map
Iterates of Generalized Logistic Maps for Superstable Parameter Values
Trajectory-Scaling Functions for Generalized Logistic Maps with z-Unimodality
Finite Lyapunov Exponent for Generalized Logistic Maps with z-Unimodality
Feigenbaum's Scaling Relation for Superstable Parameter Values: "Bifurcation Diagram Helper"
Cobweb Diagram for Generalized Logistic Maps with z-Unimodality
Degenerate Critical Points and Catastrophes: Fold Catastrophe
Time-Series Analysis for Generalized Logistic Maps with z-Unimodality
Estimating the Feigenbaum Constant from a One-Parameter Scaling Law
Stack Diagram for 1D Box-Counting Steps
Two-Color Pixel Division Game for Generalized Logistic Maps with z-Unimodality
High-Precision Newton Algorithm for Generalized Logistic Maps with Unimodality z
Feigenbaum's Scaling Law for the Logistic Map
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to
Mathematica Player 7EX
I already have
Mathematica Player
or
Mathematica 7+