Basic Parameters of the Mittenpunkt

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The Mittenpunkt (also called the middlespoint [1]) of a triangle
is the intersection of the lines through the excenters and the midpoints
,
,
of the corresponding sides.
Contributed by: Minh Trinh Xuan (August 2022)
Open content licensed under CC BY-NC-SA
Snapshots
Details
A triangle center is said to be even when its barycentric coordinates can be expressed as a function of three variables ,
,
that all occur with even exponents. If the center of a triangle has constant barycentric coordinates, it is called a neutral center (the centroid
is the only neutral center). A triangle center is said to be odd if it is neither even nor neutral.
Standard barycentric coordinates of a point with respect to a reference triangle are normalized to have a sum of 1.
Reference
[1] Encyclopedia of Triangle Centers (ETC). https://faculty.evansville.edu/ck6/encyclopedia/etc.html.
Permanent Citation