 # Basic Parameters of the Orthocenter

Initializing live version Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

The orthocenter of a triangle is the intersection of its three altitudes.

[more]

Let , , be the side lengths opposite the corresponding vertices and , , be the circumradius, inradius and semiperimeter of .

Let , , be the exact trilinear coordinates of and be the sum of the exact trilinear coordinates of the point .

Further, , , , are the Conway parameters with , is the cevian triangle and pedal triangle of .

Then: , , .

You can drag the vertices , and .

[less]

Contributed by: Minh Trinh Xuan (August 2022)
Open content licensed under CC BY-NC-SA

## Snapshots   ## Details

A triangle center is said to be even when its barycentric coordinates can be expressed as a function of three variables , , that all occur with even exponents. If the center of a triangle has constant barycentric coordinates, it is called a neutral center (the centroid is the only neutral center). A triangle center is said to be odd if it is neither even nor neutral.

Standard barycentric coordinates of a point with respect to a reference triangle are normalized to have a sum of 1.

Reference

 Encyclopedia of Triangle Centers (ETC). https://faculty.evansville.edu/ck6/encyclopedia/etc.html.

## Permanent Citation

Minh Trinh Xuan

 Feedback (field required) Email (field required) Name Occupation Organization Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback. Send