Bound-State Spectra for Two Delta Function Potentials

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows the bound-state spectra of a particle of mass
in the presence of two attractive
potentials separated by a distance
,
. Since the Fourier transform of this potential is factorizable,
, the bound-state spectra are easily obtained using the momentum-space Schrödinger equation. The energies are normalized to the magnitude of the symmetric-state energy at
. Note that the second (antisymmetric) bound state appears only when the distance between the
functions exceeds the critical value
.
Contributed by: Christopher R. Jamell and Yogesh N. Joglekar (IUPUI) (March 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Snapshot 1: typical symmetric and antisymmetric bound-state energies as a function of distance
between the two attractive
functions
Snapshot 2: for a weak potential strength , a second bound-state, the antisymmetric state, appears only when the distance between the two
functions is large,
Snapshot 3: for a strong potential , the symmetric and antisymmetric states become degenerate when the distance
between the two
functions is increased
Analytical and numerical treatment of the Schrodinger equation in momentum space can be found in W. A. Karr, C. R. Jamell, and Y. N. Joglekar, "Numerical Approach to Schrodinger Equation in Momentum Space," arXiv, 2009.
Permanent Citation