 # Centroids of Triangles with Vertices on the Unit Circle

Initializing live version Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Marden's theorem , which Dan Kalman calls "the most marvelous theorem in mathematics,"  states that given a triangle in the complex plane, there is a unique ellipse (the Steiner inellipse) that is tangent to the midpoint of each side of the triangle. Further, if the vertices of are the points , then the foci of are the critical points of the polynomial , and the centroid of is the root of .

[more]

Frayer et al.  note that if one of the vertices is fixed (say ), then as the other two vary, stays within a circle of radius whose center is of the way along a radial line through . This is a consequence of a fundamental theorem about triangle medians  that states the centroid divides the median of a triangle in a ratio. Let be the midpoint of the side opposite ; this means that . Since must be within the unit disk, it follows that .

In the image, the fixed vertex is red and the dashed blue circle contains the centroid , shown in green.

[less]

Contributed by: Chris Boucher (August 2022)
Open content licensed under CC BY-NC-SA

## Snapshots   ## Details

References

 B. Torrence, "Marden's Theorem" from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/MardensTheorem.

 D. Kalman, "An Elementary Proof of Marden’s Theorem," The American Mathematical Monthly, 115(4), 2008 pp. 330–338. www.jstor.org/stable/27642475.

 C. Frayer, M. Kwon, C. Schafhauser and J. A. Swenson, "The Geometry of Cubic Polynomials," Mathematics Magazine, 87(2), 2014 pp. 113–124. doi:10.4169/math.mag.87.2.113.

 T. Garza, "The Centroid of a Triangle Divides Each Median in the Ratio 1:2" from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/TheCentroidOfATriangleDividesEachMedianInTheRatio12.

## Permanent Citation

Chris Boucher

 Feedback (field required) Email (field required) Name Occupation Organization Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback. Send