Circular Hole Drilled in a Cone

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration lets you explore the shape of the difference between a cone and a circular cylinder.
Contributed by: Erik Mahieu (February 2014)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Consider a cylinder of radius , with axis at a distance
from the
axis and at a height
above the
-
plane. Its parametric equations are
,
,
,
where and
are parameters.
The parametric equations of a right cone with base radius and height
are
,
,
,
where and
are parameters.
The intersection curve of the two surfaces can be obtained by solving the system of three equations
for three of the four parameters . In this Demonstration, solving for
,
, and
gives the parametric equations for the intersection curve with parameter
(the curve consists of two parts, depending on the sign inside the equation for
):
,
,
,
with
and
.
Permanent Citation