Conway's Billiard Ball Loop

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
A billiard path is a polygon with vertices on the faces of a polyhedron such that if two segments meet at a vertex on a face
, the plane through them is perpendicular to
and the angle they form is bisected by the normal to
at
. A billiard ball loop is a closed billiard path.
Contributed by: Izidor Hafner (October 2013)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Reference
[1] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, London: Penguin Books, 1991 p. 14.
Permanent Citation
"Conway's Billiard Ball Loop"
http://demonstrations.wolfram.com/ConwaysBilliardBallLoop/
Wolfram Demonstrations Project
Published: October 11 2013