Dark Fraction of the Moon

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The fraction of the Moon that is dark is a function of the phase angle . This function is
and can be found by taking an area integral over the circle. A sphere with one hemisphere black, the other hemisphere white, and rotated by
is shown in the top-left corner. The area integral being performed is shown in the top-right corner.
Contributed by: Aaron Becker (March 2012)
Open content licensed under CC BY-NC-SA
Snapshots
Details
For a unit radius sphere, the dividing equatorial line between the light and dark hemispheres projects to when
, and to
for
. Therefore when
, the dark area is given by the area integral from the bottom of the sphere,
, to the dividing line
. Similarly, when
the dark area is given by the area integral from the dividing line to the top of the sphere,
, and is
. Because the total area of the sphere is
, dividing these area integrals by
gives us the fraction that is dark,
. The fraction of the moon that is illuminated is (1 – the fraction that is dark), and is given by
.
This quantity is derived in a different way in the following reference. Note that by the double-angle formula, .
Reference
[1] D. B. Taylor, S. A. Bell, J. L. Hilton, and A. T. Sinclair, Computation of the Quantities Describing the Lunar Librations in the Astronomical Almanac, Ft. Belvoir: Defense Technical Information Center, 2010.
Permanent Citation