Determinants Seen Geometrically

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

The determinant of a matrix is the area of the parallelogram with the column vectors and as two of its sides.


Similarly, the determinant of a matrix is the volume of the parallelepiped (skew box) with the column vectors , , and as three of its edges.

Color indicates sign.

When the column vectors are linearly dependent, the parallelogram or parallelepiped flattens down at least one dimension and area or volume is zero. Other determinant facts have corresponding geometric interpretations. For instance, doubling a column doubles the area or volume because that doubles one of the dimensions of the parallelogram or parallelepiped.


Contributed by: George Beck (March 2011)
Open content licensed under CC BY-NC-SA



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.