Diffusion-Limited Aggregation

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

A simple model of kinetic growth process is diffusion-limited aggregation (DLA), which consists of particles in Brownian motion that "stick" together in a square lattice. In the 1D case, particles are added in random positions with the same value of height, which increases at each step. For the 2D case, other subtleties are involved; a particle is released from a randomly selected initial location within a circle of radius to move randomly. If the particle moves to a location contiguous to an occupied site, it is added to the cluster. The particle continues to move until it is captured or moves a distance away from the original position in the circle. When the distance is varied, the cluster can be develops into a fractal pattern, as described in the paper by Witten and Sander.

Contributed by: Enrique Zeleny (March 2011)
Open content licensed under CC BY-NC-SA



T. A. Witten Jr, L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

Huang, Yi-Bin; Somasundaran, P., Phys. Rev. A 36, 4518 (1987)

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.