Energy Levels of a Morse Oscillator

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

The Morse function , where is the internuclear distance, provides a useful approximation for the potential energy of a diatomic molecule. It is superior to the harmonic oscillator model in that it can account for anharmonicity and bond dissociation. The relevant experimental parameters are the dissociation energy and the fundamental vibrational frequency , both conventionally expressed in wavenumbers (), the equilibrium internuclear distance in Angstrom units (Å), and the reduced mass in atomic mass units (amu). The exponential parameter is given by in appropriate units. The Schrödinger equation for the Morse oscillator is exactly solvable, giving the vibrational eigenvalues InlineMath, for . Unlike the harmonic oscillator, the Morse potential has a finite number of bound vibrational levels with .

Contributed by: S. M. Blinder (March 2011)
Open content licensed under CC BY-NC-SA



Snapshot 1: vibrational states of molecule

Snapshot 2: HCl molecule

Snapshot 3: HI molecule

Reference: P. M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels," Phys. Rev., 34(1), 1929 pp. 57–64.

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.