Heating Water and Air in a Sealed Container

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration models the behavior of a sealed, 1-L autoclave that initially contains mostly water plus a small volume of air, all at 25 °C. Change the initial volume of water with a slider and the temperature resets to 25 °C. As the temperature increases by moving the slider, liquid water expands and its saturation pressure increases. At the same time, the gas-phase volume decreases, so gas-phase and
partial pressures increase (ideal gas law). The amounts of
and
dissolved in the water increase with pressure, but decrease with temperature. The amounts dissolved are shown in the bar chart (green = gas phase, purple = dissolved). Even at moderate temperatures, the pressure inside the sealed container can be quite high.
Contributed by: Derek M. Machalek and Rachael L. Baumann (August 2015)
Additional contributions by: John L. Falconer
(University of Colorado Boulder, Department of Chemical and Biological Engineering)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The final liquid volume of water is given by:
,
where is the initial liquid volume (L) at 25 °C,
is temperature (°C), and
,
,
and
are constants.
The total pressure in the container is equal to the saturation pressure of water
plus the partial pressures of oxygen
and nitrogen
:
.
The saturation pressure of water is calculated using the Antoine equation:
,
where ,
and
are Antoine constants.
The partial pressures of oxygen and nitrogen are calculated using the ideal gas law:
,
where is the fraction of oxygen or nitrogen in air where
and
,
is the moles of
in the gas phase,
is the ideal gas constant ([L bar]/[mol K]) and
is the vapor volume (L).
The total moles of oxygen and nitrogen
in the container are calculated at 25 °C and 1 bar pressure, the moles in the gas phase are calculated using the ideal gas law, and the moles dissolved in water are calculated using Henry's law:
,
,
where and
are Henry's law constants (mol/[L bar]):
,
.
For all and
, the moles in the gas phase and dissolved must equal the total moles at 25 °C and 1 bar:
,
.
The screencast video at [1] shows how to use this Demonstration.
Reference
[1] Heating Water and Air in a Sealed Container [Video]. (Aug 31, 2016) www.colorado.edu/learncheme/thermodynamics/HeatingWaterAirSealedContainer.html.
Permanent Citation