Cubic Connection, Golden Ratio in Geometry, Geometric constructions of Phi in Circles'/> Hexagons and the Golden Ratio - Wolfram Demonstrations Project

Hexagons and the Golden Ratio

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstrations has to do with Odom's recognition of the relationship between the golden ratio and the equilateral triangle. Construct three triangles by extending the edges of an equilateral triangle.


When the extension is inversely proportional to the golden ratio, two vertices of each triangle are on a circle circumscribing a triangle twice as large as the original triangle.

When the extension is proportional to the golden ratio, the outside vertices of the three triangles determine a hexagon having two different edge lengths whose ratio is equal to the golden ratio. The vertices of the hexagon determine two triangles that can be found in the compound of two icosahedra or the compound of five octahedra.


Contributed by: Sándor Kabai (March 2011)
Open content licensed under CC BY-NC-SA




Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.