Iso-Optic Curve of the Ellipse

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows an ellipse (red), and two other curves (blue), from which the ellipse subtends the angles (further from the ellipse) and
(closer to the ellipse).
Contributed by: Géza Csima, Jenő Szirmai, and János Tóth (December 2008)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Given an ellipse with semi-major and semi-minor axes and
, we look for viewpoints from which the ellipse subtends the angle
. We start from the point
on the ellipse; this will be one of the tangent points. Next we calculate the two possible viewpoints
,
; from one of them the ellipse subtends the angle
, from the other one the ellipse subtends the angle
. As the parameter
goes from 0 to
we get the set of viewpoints for those two angles, which form the two iso-optic curves of the ellipse.
You can set the ellipse parameters and
to between 1 and 10, and
between 5° and 90°. The first snapshot shows the iso‐optic curve in general. From the second snapshot you can see that if
is small, the curve looks like a circle. In the third snapshot,
, so the curve is a circle.
Permanent Citation