Laplace-Dirichlet Eigenstates of an Ellipse

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The fundamental modes of vibration for an idealized drum of given shape satisfy the Laplace–Dirichlet eigenproblem. This Demonstration computes solutions to the Laplace–Dirichlet eigenproblem on an ellipse with unit area and eccentricity . For an ellipse
with semiaxes
, the eccentricity is
and the area is
. The Laplace–Dirichlet eigenvalues
and eigenfunctions
satisfy
in the interior of
, and the Dirichlet boundary condition
on the boundary
.
Contributed by: Braxton Osting (September 2012)
Open content licensed under CC BY-NC-SA
Snapshots
Details
For more detailed descriptions of Laplace–Dirichlet eigensolutions on an ellipse, see [1] or [2].
References
[1] B. A. Troesch and H. R. Troesch, "Eigenfrequencies of an Elliptic Membrane," Mathematics of Computation, 27(124), 1973 pp. 755–765. doi:10.1090/S0025-5718-1973-0421276-2.
[2] B. A. Troesch, "Elliptical Membranes with Smallest Second Eigenvalue," Mathematics of Computation, 27(124), 1973 pp. 767–772. doi:10.1090/S0025-5718-1973-0421277-4.
Permanent Citation
"Laplace-Dirichlet Eigenstates of an Ellipse"
http://demonstrations.wolfram.com/LaplaceDirichletEigenstatesOfAnEllipse/
Wolfram Demonstrations Project
Published: September 10 2012