Lewis Carroll's Curve

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows a curve first defined by Lewis Carroll.
Contributed by: Izidor Hafner (August 2013)
Open content licensed under CC BY-NC-SA
Snapshots
Details
In [1, p. 16], Lewis Carroll posed the following problem:
"If a regular tetrahedron be placed, with one vertex downwards, in a socket which exactly fits it, and be turned round its vertical axis, through an angle of , raising it only so much as necessary, until it again fits the socket: find the locus of one of the revolting vertices."
The answer and solution are given [1, p. 26, p. 100]. The equations for the locus are ;
, where the tetrahedron has edge length 1, altitude
, and
.
Reference
[1] L. Carroll, The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled Tale, 4th ed., New York: Dover, 1958.
Permanent Citation