n-Sectors of the Angles of a Triangle

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The -sectors of an angle are the lines that divide the angle into
equal parts. In a triangle, the bisectors are collinear, the trisectors lead to Morley's theorem, …. More modestly, this Demonstration provides a way to count the intersection points of the
-sectors of the angles of a triangle as a function of
, which is
for a scalene triangle.
Contributed by: Jacques Marchandise (May 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Let ,
, and
be the sets of
-sectors of the angles
,
, and
, respectively. The number of points of intersection between any two of the sets is
, hence, the number of points is at most
. For example, the maximum number of points for
is 3: one is the intersection of the bisectors of
and
, one is the intersection of the bisectors of
and
, and one is the intersection of the bisectors of
and
, but we know these three points coincide. The principle of inclusion-exclusion gives the number of distinct points:
.
When , this gives
.
Now we want to count the distinct points for any value of . Some experimentation with this Demonstration shows that the result depends on the triangle's shape, especially its central or lateral symmetry. For example, for
, the number of lines is nine, which is odd, so that the bisectors of each angle are in each of
,
, and
. The number
is 37 for an equilateral triangle with central symmetry, one for a scalene triangle with no symmetry, and nine for a isosceles with lateral symmetry; for
, both are zero, and so on.
By tabulating the numbers for each set and applying Mathematica's built-in function FindSequenceFunction on the results, it appears (this is not a proof) that for a scalene triangle . For an isosceles triangle without a right angle the formula appears to be
; for an equilateral or right isosceles triangle the formulas are complicated.
Permanent Citation