Non-Ideal Vapor-Liquid Equilibrium (VLE) Modeled by the Margules Equation

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
and
diagrams are generated for one mole of a binary mixture in vapor-liquid equilibrium (VLE). The
diagram is shown at a temperature of 110 °C, and the
diagram is shown at a pressure of 1.6 bar. The solid blue curve represents the liquid-phase boundary (bubble point) and the solid green curve represents the vapor-phase boundary (dew point). The bar chart displays the moles of liquid (blue) and vapor (green) in equilibrium and the mole fraction of component
in each phase
for liquid,
for vapor); the relative amounts are calculated using the lever rule. Click and drag the black dot on the diagrams to change the mole fraction of component
and the temperature (on
diagram) or pressure (on
diagram).
Contributed by: Rachael L. Baumann (September 2014)
Additional contributions by: John L. Falconer and Nick Bongiardina
(University of Colorado Boulder, Department of Chemical and Biological Engineering)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The saturation pressure of component is calculated using the Antoine equation:
,
where is saturation pressure of component
(bar),
,
, and
are Antoine constants, and
is temperature (°C).
The two-parameter Margules model is used to calculate the activity coefficients for a non-ideal liquid mixture of components and
. This model fits the excess Gibbs free energy:
,
where is excess Gibbs energy, and
is the ideal gas constant.
The activity coefficients ,
are given by:
,
,
where and
are the liquid mole fractions of components
and
and
, and
and
are the Margules parameters.
The modified Raoult's law is used to calculate the bubble-point and dew-point pressures using the factors:
,
where is the vapor mole fraction and
, and
is the total pressure (bar).
Bubble-point pressure calculation:
.
Dew-point pressure calculation:
.
The screencast video at [2] shows how to use this Demonstration.
References
[1] J. R. Elliott and C. T. Lira, Introductory Chemical Engineering Thermodynamics, New York: Prentice Hall, 2012 pp. 372–377, 430.
[2] Non-Ideal Vapor-Liquid Equilibrium (VLE) Modeled by the Margules Equation. www.colorado.edu/learncheme/thermodynamics/NonIdealVLEMargules.html.
Permanent Citation