Nonperiodic Substitution Tiling of the Plane

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The substitution rule specified in this Demonstration enables filling and then inflation of a tile into four copies of itself. Iterating these rules forms larger and larger "supertiles" and ultimately defines substitution tilings, which are divisions of the plane into infinite hierarchies of supertiles. The inflation factor is four, and geometric transformations such as rotations and reflections are applied to define the supertiles.
Contributed by: Wolfgang Hitzl (December 2017)
Open content licensed under CC BY-NC-SA
Snapshots
Details
References
[1] I. Stewart, "Ungewöhnliche Kachelungen," Spektrum der Wissenschaft 11, 2001 p. 114. www.spektrum.de/magazin/ungewoehnliche-kachelungen/828148.
[2] Wikipedia. "Substitution Tiling." (Dec 1, 2017) en.wikipedia.org/wiki/Substitution_tiling.
[3] Tilings Encyclopedia. "Substitution." (Dec 1, 2017) tilings.math.uni-bielefeld.de/glossary/substitution.
Permanent Citation
"Nonperiodic Substitution Tiling of the Plane"
http://demonstrations.wolfram.com/NonperiodicSubstitutionTilingOfThePlane/
Wolfram Demonstrations Project
Published: December 5 2017