Paradoxical Triangular Braid

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This triangular braid with three links colored red, yellow, and blue was designed by Koos Verhoeff and realized as mathematical art in three types of wood. The paradox comes about as follows. If there is no red link, then the blue link is completely on top of the yellow link. If there is no yellow link, then the red is completely on top of the blue. Finally, if there is no blue link, then the yellow link is completely on top of the red. How can it be that yellow is above red, red is above blue, and blue is above yellow?
[more]
Contributed by: Tom Verhoeff (August 2013)
(Eindhoven University of Technology)
Open content licensed under CC BY-NC-SA
Snapshots
Details
See [1] for details on the design of this triangular braid. For a video, see http://www.youtube.com/watch?v=3b_P9TPnxGA.
Reference
[1] T. Verhoeff, "3D Turtle Geometry: Artwork, Theory, Program Equivalence and Symmetry," International Journal of Arts and Technology, 3(2/3), 2010 pp. 288–319.
Permanent Citation
"Paradoxical Triangular Braid"
http://demonstrations.wolfram.com/ParadoxicalTriangularBraid/
Wolfram Demonstrations Project
Published: August 14 2013