# Particular Solution of a Nonhomogeneous Linear Second-Order Differential Equation with Constant Coefficients

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstration shows the method of undetermined coefficients for a nonhomogeneous differential equation of the form with , , , and constants. If , then the form of the particular solution is . If and , the particular solution is of the form . If and , the particular solution is of the form .

[more]
Contributed by: Izidor Hafner (January 2014)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

The general solution of a nonhomogeneous linear differential equation is , where is the general solution of the corresponding homogeneous equation and is a particular solution of the first equation.

Reference

[1] V. P. Minorsky, *Problems in Higher Mathematics*, Moscow: Mir Publishers, 1975 pp. 262-263.

## Permanent Citation