Poles and Zeros of Time-Domain Response Functions

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration displays the response of a system with domain representation
to an impulse, step or sinusoidal input.
is a transfer function generated by multiplying the poles and zeros together. Poles are at locations
marked with a red X and have the form
. Zeros are at locations
marked with a blue O and have the form
. You can drag the poles and zeros, but because the generating differential equation is assumed to have real coefficients, all complex poles and zeros occur as complex conjugates.
Contributed by: Aaron Becker (November 2016)
(The University of Houston)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The poles and zeros are movable locators that are disabled when inside the gray rectangle. Poles are roots of the denominator of , while zeros are roots of the numerator.
Poles in the right-hand plane of the domain (with positive real components) represent unstable modes with time-domain responses that either increase to
or decrease to
as time increases. This region of the
domain is colored red. A single right-hand plane pole dominates the system response and makes the system unstable. If the poles are all in the blue region, the response is damped and it overshoots the final value by no more than 15%.
Transfer function zeros cannot change the stability of the system but can alter the response. Each pole generates a response
in the time domain. Poles further to the right influence the time-domain response more than poles to the left, because the time-domain responses of poles with large negative components decay to zero quickly. An oscillatory response is due to complex pole pairs.
Reference
[1] F. T. Ulaby and A. E. Yagle, Engineering Signals and Systems in Continuous and Discrete Time, 2nd ed., Allendale, NJ: National Technology and Science Press, 2016.
Permanent Citation