Pythagorean-Hodograph Quintic Curves

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
A polynomial curve is a Pythagorean-hodograph (PH) curve if
is the square of another polynomial. The lowest degree curves satisfying this condition are PH cubics, but such a curve cannot inflect. Quintic PH curves are needed to get an inflexion point. The degrees of freedom of such a curve allow the choice of four of the six control polygon points. The PH property determines the two remaining points.
Contributed by: Isabelle Cattiaux-Huillard (January 2015)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Consider a polynomial parametric curve . By definition, its hodograph is its derivative
. The curve is called Pythagorean if there exists another polynomial
such that
. The curve is then said to have a Pythagorean hodograph or to be a PH curve. Therefore, its speed
is also a polynomial function of
. A PH curve needs to have degree five to have an inflexion point. These quintic curves are written in BP form (see Related Links), that is, represented by their control polygons
.
Denote the distance between and
by
and the angle
by
. A quintic curve is a PH curve if and only if
,
, and
. These equations determine the last two control points based on the previous four.
Reference
[1] R. T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, Berlin: Springer, 2008.
Permanent Citation