Quasi-exact Solution for a Double-Well Potential

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

If a Schrödinger equation admits exact analytic solutions only for certain values of the parameters in the Hamiltonian, the problem is said to be quasi-exact. We have found that the bimodal Gaussian function


is a quasi-exact solution of the Schrödinger equation for the double-well potential

, ,

which closely approximates a pair of harmonic oscillator potentials with origins near .

The ground-state energy is given by .

There is no other analytic solution for this potential. The first excited state can be surmised to have the approximate form


The first excited state energy is approximated by . The second excited state is represented by a function orthogonal to both and . The energy is approximated by .

The graphic displays the energy as a blue horizontal line on a plot of . The wavefunction is plotted on the right. Select the appropriate checkboxes to display the wavefunctions and and the corresponding energies and .


Contributed by: S. M. Blinder (August 2022)
Open content licensed under CC BY-NC-SA




Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.