Residence Time Distribution for Continuous Stirred-Tank Reactors in Series Using the First Four Moments

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
Consider CSTRs (continuous strirred-tank reactors) subject to a tracer impulse experiment. The residence time distribution (RTD) can be found exactly by solving a system of ODEs obtained from mass balances in all reactors or by Laplace inversion of the system's transfer function. It turns out that the first four moments can be easily obtained from the transfer function expression and by means of a Gram–Charlier series for the approximatie RTD. This Demonstration presents a comparison of these three methods for user-set values of
, the number of CSTRs in series. It is clear that, as
increases, the exact result and the approximate result (derived from the moment expressions in Gram–Charlier theory) show close agreement.
Contributed by: Housam Binous and Ahmed Bellagi (March 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
S. M. Walas, Chemical Reaction Engineering Handbook of Solved Problems, New York: Gordon and Breach Publishers, 1995 p. 531.
Permanent Citation