SEIRD Model for Analyzing Coronavirus (COVID-19) Pandemic

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstration presents a susceptible\[Hyphen]exposed\[Hyphen]infectious\[Hyphen]recovered-died (SEIRD) model for analyzing the coronavirus (COVID-19) pandemic. A control parameter with a value in the range is introduced into the model to measure the effectiveness of a social distancing policy. The higher the value of , the more effective the control policy. The parameters of the model were obtained by using the vast data provided about the pandemic on a daily basis by several scientific organizations. The model makes predictions on the turning points and possible vanishing time of the pandemic for a given population and initial number of exposed persons.

Contributed by: Wusu Ashiribo Senapon and Olabanjo Olusola Aanu (April 2020)
(Department of Mathematics and Department of Computer Science, Lagos State University, Lagos, Nigeria)
Open content licensed under CC BY-NC-SA



The SEIRD model for COVID-19 implemented in this Demonstration is the coupled system of ordinary differential equations:







= susceptible fraction of the population,

= exposed fraction of the population,

= infected fraction of the population,

= fraction of population that has recovered,

= fraction of population that has died of the infection,

= effectiveness of control (social distancing) measure,

= infection rate,

= average incubation time (days),

= average infective time (days),

= case fatality rate.


[1] Nigeria Centre for Disease Control.

[2] World Health Organization. "Coronavirus Disease 2019 (COVID-19) Situation Report–74." (Apr 22, 2020)

[3] Worldometer. "COVID-19 Coronavirus Pandemic." (Apr 22, 2020)

[4] L. Peng, W. Yang, D. Zhang, C. Zhuge and L. Hong, "Epidemic Analysis of COVID-19 in China by Dynamical Modeling," medRxiv, 2020. doi:10.1101/2020.02.16.20023465.

[5] B. M. Ndiaye, L. Tendeng and D. F. Seck, "Analysis of the COVID-19 Pandemic by SIR Model and Machine Learning Technics for Forecasting."

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.