Set Partition Refinement Lattice

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The set of all partitions of a set can be partially ordered by refinement. A partition is a refinement of partition
if every subset inside
fits inside a subset of
. For example,
is a refinement of
; but
is not because the subset
is itself not contained in either subset of
. This Demonstration shows the lattice formed by all the sets of partitions of a given set ordered by refinement.
Contributed by: Robert Dickau (March 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Snapshot 1: The number of partitions at a given level is the Stirling number of the second kind; this figure corresponds to . It follows that the total number of vertices in the graph is the Bell number; in this figure,
.
Snapshot 2: For graphs with large numbers of vertices, clearing the "show insets" option can better show the overall structure of the lattice.
Snapshot 3: Other visualizations are available by changing the "graph type" option.
Reference
[1] R. P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge: Cambridge University Press, 1997 pp. 127–128.
Permanent Citation