 # Stack Diagram for 1D Box-Counting Steps

Initializing live version Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

The box-counting dimension [1–4] can be defined as

[more] ,

where ( ) is an initial box (or grid) size, is a natural number representing the box-counting step, is the box size for the scaling step, and is the number of boxes with the same size . It can be applied to any fractal, including wild fractals such as the Brownian motion. This Demonstration visualizes one-dimensional (1D) box-counting steps as a stack diagram.

The test map used in this Demonstration is the well-known logistic map [3–7] , where is an iteration number, is the iterate starting from an initial condition , and is a control parameter value; has been fixed at 5.00001, and for imitating attractors, 4000 iterates are selected from to .

[less]

Contributed by: Ki-Jung Moon (December 2013)
Open content licensed under CC BY-NC-SA

## Snapshots   ## Details

Box counting is a method of gathering data for analyzing complex patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, typically "box" shaped, and analyzing the pieces at each smaller scale .

References

 Wikipedia. "Box Counting." (Feb 1, 2013) en.wikipedia.org/wiki/Box_counting.

 B. Mandelbrot, The Fractal Geometry of Nature, San Francisco: W. H. Freeman, 1982.

 H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, 2nd ed., New York: Springer, 2004.

 S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media, 2002.

 R. May, "Simple Mathematical Models with Very Complicated Dynamics," Nature, 261(5560), 1976 pp. 459–467.

 M. J. Feigenbaum, "Quantitative Universality for a Class of Non-Linear Transformations," Journal of Statistical Physics, 19, 1978 pp. 25–52.

 M. J. Feigenbaum, "The Universal Metric Properties of Nonlinear Transformations," Journal of Statistical Physics, 21, 1979 pp. 669–706.

## Permanent Citation

Ki-Jung Moon

 Feedback (field required) Email (field required) Name Occupation Organization Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback. Send