Surface Morphing

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Continuous morphing between two parametric surfaces in 3D.

Contributed by: Yu-Sung Chang (September 2007)
Open content licensed under CC BY-NC-SA



This Demonstration shows morphing between a plane, a sphere, a torus, a cylinder, a Möbius strip, and a sine surface using a continuous transition function.

For any two surfaces which can be defined by continuous parametrizations :[, , ] → , the transition function can be assigned as: π)=(1 - τ(t)) + τ(t) , where τ(t) ϵ [0,1] for ∀t ϵ [0,1].

Also, we multiply a rotation matrix to the result to provide a 360° view of the morphing.

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.