Tarski's Adaptation of Wojtowicz's Argument on Optimal Dissection of a Unit Square

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows a reconstruction of a theorem of Tarski. An optimal dissection uses the smallest number of pieces. The theorem states that the number of pieces in an optimal dissection of a unit square into a rectangle of dimensions and
has an upper bound
, where
denotes the ceiling of
, that is, the smallest integer greater than or equal to
.
Contributed by: Izidor Hafner (May 2017)
Open content licensed under CC BY-NC-SA
Snapshots
Details
Before World War II, the famous logician Alfred Tarski worked as a high school teacher and as assistant to Jan Łukasiewicz. His contributions to elementary mathematics are described in [1].
Polygons that have the same area are called equivalent. In the article "On the Degree of Equivalence of Polygons," Tarski defines the degree of equivalence of two equivalent polygons and
as the smallest natural number
for which there exists an
-piece dissection of
to
. The function is denoted as
.
If is a square of side
and
is a rectangle of sides
and
, Tarski introduces
and states a theorem about the function
.
Tarski did not prove the theorem, but he gave some hints with reference to Wojtowich's book for high schools. The theorem of this Demonstration has been proved using Mathematica graphics [1, pp. 128, 129].
Reference
[1] A. McFarland, J. McFarland and J. T. Smith, eds., Alfred Tarski: Early Work in Poland: Geometry and Teaching, New York: Birkhäuser, 2014.
Permanent Citation